
� A brief account of any design choices you made and reasons why.

1. Data Buffer: The required buffer is positive edge with active low reset. Hence a D

-flip-flop with D input, Q output, edge clock in and low reset is been chose from

the library. i.e. DFFSRLQ (Positive-edge triggered D-flipflop with synchronous reset
(active low) and Q-output only)

2. Control Unit: A moore machine with clocked output is implemented for control

unit of the LDI86. It has Eight state with seven different signals.

3. Multiplexor: This unit is full custom cell. First, using PMOS and NMOS a 1-bit

multiplexor is made. Then this cell is used for 8-bit as an 8-bit multiplexor.

� An ASM chart for the control unit.

STATE NOP LDA TBD SBA ABT NOP TTD TAB

SIGNAL

M(2:0) 110 100 011 000 001 110 101 010

ADDSHIFT(1:0) 01 01 01 10 01 01 01 01

AEN 1 0 0 0 0 0

BEN 0 0 0 0 0 1

TEN 0 0 1 1 0 0

DEN 0 1 0 0 1 0

DATALOAD 0 1 1 1 1 1 1 1

NOP

 S1

LDA

 S2

TBD

 S3

SBA

 S4

ABT

 S5

NOP

 S6

TTD

 S7

TAB

 S8

library IEEE; use IEEE.std_logic_1164.all;

entity C_UNIT is

port (CLOCK, RESET : in std_logic;

AEN,BEN,TEN,DEN,DATALOAD :out std_logic;

M: out std_logic_vector(2 downto 0);

ADDSHIFT: out std_logic_vector(1 downto 0));

end C_UNIT;

architecture BEHAVIOUR of C_UNIT is

type STATE_TYPE is (ZERO,ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT);

signal STATE: STATE_TYPE;

begin

FSM : process (CLOCK, RESET)

begin

if RESET = ‘0’ then STATE <= ZERO;
elsif CLOCK’event and CLOCK =’1’ then

case STATE is

when ZERO =>

NOP
1

000

LDA
2

010

TBD
3

110

SBA
4

100

ABT
5

101

NOP
6

111

TTD
7

011

TAB
8

001

STATE <= ONE;

when ONE =>

STATE <= TWO;

when TWO =>

STATE <= THREE;

when THREE =>

STATE <= FOUR;

when FOUR =>

STATE <= FIVE;

when FIVE =>

STATE <= SIX;

when SIX =>

STATE <= SEVEN;

when SEVEN=>

STATE <= EIGHT;

when EIGHT =>

STATE <= ONE;

end case;

end if;

end process FSM;

M<= “110” when (STATE = ONE) else

 “100” when (STATE = TWO) else

 “011” when (STATE = THREE) else

 “001” when (STATE = FIVE) else

 “110” when (STATE = SIX) else

 “101” when (STATE = SEVEN) else

 “010” when (STATE = EIGHT) else

 “000”;

ADDSHIFT <= “10” when (STATE = FOUR) else

“00” when (STATE = ZERO) else

“01”;

AEN<= ‘1’ when (STATE = TWO) else

 ‘0’;

BEN<= ‘1’ when (STATE = EIGHT) else

 ‘0’;

TEN<= ‘1’ when (STATE = FOUR) else

 ‘1’ when (STATE = FIVE) else

 ‘0’;

DEN<= ‘1’ when (STATE = THREE) else

 ‘1’ when (STATE = SEVEN) else

 ‘0’;

DATALOAD<= ‘0’ when (STATE = ONE) else

 ‘1’;

end BEHAVIOUR;

TESTBENCH FOR FSM CONTROL UNIT

library ieee;

Use ieee.std_logic_1164.ALL;

Entity tstbnch_cu is

end tstbnch_cu;

architecture test of tstbnch_cu is

component CTRL_UNIT

port (reset,clock: in std_logic;

 aen,ben,ten,den,dataload: out std_logic;

 m: out std_logic_vector(2 downto 0);

 addshift: out std_logic_vector(1 downto 0)

);

end component;

signal reset,clock: std_logic;

signal aen,ben,ten,den,dataload: std_logic;

signal m: std_logic_vector(2 downto 0);

signal addshift: std_logic_vector(1 downto 0);

begin

comp_ut: CTRL_UNIT

port map(reset,clock,aen,ben,ten,den,dataload,m,addshift);

--generate a 352.8 kHz clock (8x44.1khz)

clock_gen : process

begin

clock <= ‘0’, ‘1’ after 1400 us;

wait for 2800 us;

end process;

intialisation:process

begin

reset <= ‘0’;

wait for 5600 us; reset <= ‘1’;

wait for 22400 us; wait;

end process; end test;

� A brief analysis of the testability of the design and how this could be improved.

LDI86 is divided into following four major blocks.

1. Data Buffer (made by using standard library)

2. Processor (IP core)

3. Control Unit (VHDL)

4. Multiplexor (full custom component)

1. Data Buffer

Schematic of Data buffer using standard library of D-flip flop

Simulation of Data buffer

2. PROCESSOR

SYNTHESIS of IP core

3.Control Unit

SYNTHESIS of VHDL code

VHDL Simulation of control unit

4. Multiplexor 2 to1

Test Schematic of 2 -1 full custom multiplexor cell:

Simulation waveform:

Layout and abstract of 2-1 full custom multiplexor cell:

Verilog functional model:

module mux21 (F, A, B, Select);

 output F;

 input A;

 input B;

 input Select;

reg F;

always @(select or A or B)

F=Select ? B : A;

endmodule

Verilog Simulation of 2-1 multiplexor

5. Multiplexor 8 to1 (combination of 2 -1 multiplexor to form 8-1 mux)

Schematic

Verilog Simulation of 8-1 multiplexor

Chip:

Synthesised Schematic of chip LDI86:

Placement/routing of chip LDI86:

Post layout simulation

DELAY OF DATA BUFFER= 3.7 us

Design file: /v1/students/dk1ect/AMI4407/stdcell

Library Name: linterpol

1. Cell: C_UNIT (for Control Unit)

2. Cell: mux81 (for Full Custom Multiplexor)

3. Cell: processor (for Processor)

4. Cell: dbuffer (for Data Buffer)

HDL File: /v1/students/dk1ect/AMI4407/stdcell/vhdl

