Assignment No. 2

Advanced Electronics Design Automation

Student ID: 0308686

Asynchronous Serial Data Transmitter

Rev: 01

Dt: 03/10/2005

Student: Deepak Katkoria

ID:0308686

Advanced Electronics Design Automation

Student ID: 0308686

1. Summary: A transmitter’s mission is to serve as ‘parallel-in serial-out’. The Transmitter receives parallel data
bytes which are written to the system asynchronously and send out serially in format. In its serial out operation,
the transmitter is working synchronously with input high clock frequency as compared to serial out rate.

2. Introduction: Design of Asynchronous Serial Data Transmitter
It has been designed with a register-based architecture. Simple precautions are taken to limit the possibility of
incorrect operation due to false triggering.

Proper operation of the transmitter is initialized by a master reset cycle, setting the ‘Txout’ signal to logic-1. A
write cycle begins with the rising edge of the write input and data is written into the shift register. Here write
signal is always low for more then three clock cycles. Once the data is registered the busy signal goes high and
remain up to the last bit of data is there.

i) Transmitter Block Diagram
All internal operations of the Transmitter are synchronized to the master ‘Clock’ input.
Shift

Any asynchronous external control signals should be synchronized to the master clock using appropriate circuitry.
During transmission, the ‘Busy’ output is made active until the entire character has been output which prevents
attempts to overwrite the contents of the transmit shift register prior to completing the transmission of a character.

Many systems need to have error detection and correction implemented into design. By adding a single bit to each
byte of data, the occurrence of single-bit errors may be monitored. This extra bit is referred to as the parity bit.
And same type of detection technique is used in transmitter. Depend upon the odd ones or even ones selection, a
bit is generated and concanate with data bits.

When parity select is changed in input pin then output will update the format after one clock cycle. Suppose if
parity select is changed asynchronously to clock then that value will get update on next transaction.

Following a reset operation, the Transmitter outputs a serial data character whenever a new value is written to it.
The serial data rate is 1800 bits-per-second (556uS per bit).

Each transmitted character contains a single parity check bit appended to the 8-bit data byte. The parity bit is
generated to make the total number of logic-1’s in the 9-bit word formed by the data byte and parity bit either
even or odd, depending on the state of the ‘Even/Odd select’ input signal.

Busy ‘

- Data bits >
]
TXZData STR | DD D1 D2 D3 D4 D5 D6 D7 P 5TP :
1
/ 1800 Baud \
Start bit Stop bit
-
Parity hit
5506 Uus

Above figure illustrates the format of the serial data output by the Transmitter. Each character is sandwiched
between a logic-0 Start bit and a single logic-1 Stop bit. The data bits are transmitted least significant bit first.

Advanced Electronics Design Automation

Student ID: 0308686

Asynchronous
Serial Data
(Clock)
32768Hz
i i i —» TXData
> Transmit Shift Register
[F
Evenjodd
Select Parity

B — e
Generator

L

| o]

Reset Data-in Busy Write
Whole Architecture is divided into three major parts.
a) Shift register
b) Parity Generator
¢) Glue Logic

Shift register: Circuits which transfer data serially (one bit at a time). ASDT is composed of an Eleven-
bit shift register. This parallel in and serial output shift register is controlled by Clear, Load and shift signals.

The ‘Clear’ input causes a synchronous reset operation. It is used to force all sequential logic circuitry into a
known initial state i.e. logic-1. Load signal is used as write to registers and shift signal is used as enable the shift
operation in right direction. The main clock 32768 Hz (T= 30.5uS) is used to sample all signal. Shifting beyond
the last bit (stop bit) cause the ‘TxOut’ port to remain at logic-1.

Parity Generator: It is made of XOR gate with multiplexer (2:1) at the output of the parity.

Parity Generator

XOR
xcheck data[7.0] :8 V) parity
i)/

par_gen

The schematic of symbol of XOR parity generator (8 bit) is shown above.

Applying a logic-1 to odd_nt _even (multiplexer select line) results in NOT parity otherwise parity at the output of
the Parity generator.

It means if Datain having odd number of ones and odd_nt even signal is selecting odd then output will be
inverted otherwise will be the same.

Glue Logic: This module combine the above two block and generate the signals depend upon the conditions.
Parity output is concatenated with Datain to transmit to next block of shift register.

Advanced Electronics Design Automation

Student ID: 0308686

ii). Identify Combinational and Sequenctial Functions

ASDT is mixed logic. As it is mention in above section transmit shift register and parity bit generator is the main
block of the design. Transmit shift register is a synchronous sequential logic. It consists of 11 bit shift register and
work with 32768 Hz main clock.

Through shift register glue logic derive the busy signal.

Parity bit generator is purely a combinational circuit. It’s made of cascaded XOR gate on parallel data lines.
Depend upon the Odd_not_Even signal parity (Parout) is calculated. The output of parity is always synchronous
with 8-bit datain and updated on the final output. Based at the time of sampling only Parout is considered a valid.

Advanced Electronics Design Automation

Student ID: 0308686

3. VHDL code of ASDT

a) VHDL- HDL code
i) Asynchronous Glue Logic
ii) Parity Bit Generator
iii) Transmit Shift Register
iv) Clock Division

i) ASYNCHRONOUS GLUE LOGIC

ASYNCHRONOUS GLUE LOGIC

~-TITTLE: ASYNCHRONOUS GLUE LOGIC

--PROJECT: ASYNCHRONOUS SERIAL DATA TRANSMITTER
--FILE NAME:ASYN_GLUE.VHD
—-FILE TYPE:VHDL-HDL
LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

--USE IEEE.STD LOGIC_UNSIGNED.ALL;

ENTITY ASYN_GLUE IS

PORT
(CLK : IN STD_LOGIC;

RESET : IN STD_LOGIC;

WRITE : IN STD_LOGIC;

PAROUT: IN STD_LOGIC;

DATAIN: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

CLEAR : OUT STD_LOGIC;

LOAD : OUT STD_LOGIC;

SHIFT : OUT STD_LOGIC;

BUSY : OUT STD_LOGIC;

DATAOUT: OUT STD_LOGIC_VECTOR(8 DOWNTO 0)

)
END ASYN_GLUE;

ARCHITECTURE ASYN_GLUE_ARCHITECTURE OF ASYN_GLUE IS

SIGNAL COUNTI1:INTEGER RANGE 0 TO 255; --to generate the control signal w.r.t. to 556 us bit rate
SIGNAL VALID,WIRE BUSY:STD_LOGIC:='0";
BEGIN

PROCESS (RESET,CLK,WRITE)
BEGIN
IF cIkEVENT AND clk ='1' THEN
IF RESET ='0' THEN
COUNTI1<= 0;
VALID <="'0";
WIRE BUSY <='0';
ELSIF WRITE ='0' THEN
COUNTI<=1;
WIRE BUSY <=0';
VALID <="1%; --at this point load will trigger the shift register

Advanced Electronics Design Automation

Student ID: 0308686

ELSIF COUNT1 < 234 AND COUNT1 >=1 THEN — when write = ‘1’
COUNT1<= COUNT1 + 1; -- count will assit to generate a busy/shift signal

WIRE BUSY <='1"

IF COUNT1 < 18 AND COUNT1 >=1 THEN --generate a signal which will be

--recognize by clkout(540us)

VALID <='1";
ELSE
VALID <='0";
END IF;
ELSE
COUNT1<=0;
VALID <='0';
WIRE BUSY <='0';
END IF;
END IF;
LOAD <= VALID;
BUSY <= WIRE_BUSY;
SHIFT <= WIRE BUSY;

DATAOUT <=PAROUT & DATAIN;

END PROCESS;

CLEAR <=RESET; -buffer reset to shift register
END ASYN_GLUE_ARCHITECTURE;

ii) Parity Bit Generator

Parity Bit Generator

--Tittle: Parity Bit Generator
--Project: Asynchronous Serial Data Transmitter

--File Name:par_mod.vhd
--File Type:VHDL-HDL

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
--USE IEEE.STD LOGIC_UNSIGNED.ALL;

- ENTITY DECLARATION
ENTITY PAR_MOD IS
PORT (
ODD_OR_EVEN: IN STD_LOGIC;
DATAIN : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
PAROUT : OUT STD_LOGIC

)
END PAR_MOD;

-- ARCHITECTURE BODY

ARCHITECTURE PAR_MOD_ARCHITECTURE OF PAR_MOD IS

--DEFAULT EVEN
SIGNAL NT _PAR,PAR: STD LOGIC;
BEGIN

PAR <= (((DATAIN(7) XOR DATAIN(6))XOR (DATAIN(5) XOR DATAIN(4)))
XOR ((DATAIN(3)XOR DATAIN(2)) XOR (DATAIN(1) XOR DATAIN(0))));

-- GIVES ODD PARITY

Advanced Electronics Design Automation

Student ID: 0308686

NT_PAR <=NOT PAR;
PAROUT<=PAR WHEN ODD_OR_EVEN ='0' ELSE NT PAR;

END PAR_MOD_ARCHITECTURE;

iii) TRANSMIT SHIFT REGISTER

TRANSMIT SHIFT REGISTER

--Tittle: Transmit Shift Register
--Project: Asynchronous Serial Data Transmitter

--File Name:tx_shft.vhd
--File Type:VHDL-HDL 87

LIBRARY IEEE;

USE IEEE.STD_LOGIC 1164.ALL;

--USE IEEE.STD LOGIC_UNSIGNED.ALL;
USE IEEE.STD _LOGIC_ARITH.ALL;

ENTITY TX_SHFT IS

PORT(
CLKOUT: IN STD LOGIC;
CLEAR: IN STD LOGIC;
LOAD: IN STD LOGIC;
SHIFT: IN STD_LOGIC;
DATAOUT: IN STD_LOGIC_VECTOR(8 DOWNTO 0);
TxDATA: OUT STD_LOGIC

)

END TX_SHFT;

-- ARCHITECTURE BODY

ARCHITECTURE TX SHFT ARCHITECTURE OF TX SHFT IS

SIGNAL DAT PAR:STD LOGIC_VECTOR(11 DOWNTO 0):=(OTHERS=>'1");
BEGIN

PROCESS(CLKOUT,CLEAR,LOAD,SHIFT,DATAOUT)

BEGIN
IF CLKOUT'EVENT AND CLKOUT='1' THEN
IF CLEAR='0' THEN
DAT PAR<=(OTHERS=>'1"); --set output to logic ‘1’

ELSIF LOAD="1' THEN
DAT PAR<=('1' & DATAOUT & '0'& '1"); --stop bit, data, start bit

ELSIF SHIFT='1' THEN
DAT_PAR(10 DOWNTO 0) <= DAT_PAR(11 DOWNTO 1); -- shifting right
DAT PAR(11)<='1";
END IF;
END IF;

TxDATA<=DAT_PAR(0); -- least bit is transmitted out

Advanced Electronics Design Automation

Student ID: 0308686

END PROCESS;
END TX SHFT ARCHITECTURE;

iv) Clock Division

Clock Division

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;
--USE IEEE.STD LOGIC_UNSIGNED.ALL;

ENTITY CLK DIV IS

PORT (
CLK : IN STD LOGIC;
RESET : IN STD_LOGIC;
CLKOUT : OUT STD_LOGIC
)
END CLK_DIV;

ARCHITECTURE CLK DIV_ARCHITECTURE OF CLK DIV IS

SIGNAL COUNTER: STD_LOGIC_VECTOR (3 DOWNTO 0);--for 4-bit counter

SIGNAL COUNTERTC :STD_LOGIC :='1"; --terminal count for last flip-flop
SIGNAL CLK OUT :STD_LOGIC :='0"; --internal clkout signal
BEGIN

PROCESS (RESET,CLK)

BEGIN
IF RESET ="'0' THEN
COUNTER <= (OTHERS =>'0");
COUNTERTC <='0";
ELSIF CLK'EVENT AND CLK ='l' THEN
IF COUNTER ="1000" THEN -- when count = 8, generate a signal to toggle the t-F/F
COUNTERTC <=0,
COUNTER<="0000";
ELSE --- logic at the clk_out will remain same
COUNTERTC <='1';
COUNTER <= COUNTER + 1;

END IF;
IF COUNTERTC ='0' THEN -- to give 50 % clock cycle syncronised to terminal count
CLK OUT <=NOT CLK_OUT;
END IF;
END IF;

CLKOUT<=CLK_OUT;

END PROCESS;
END CLK_DIV_ARCHITECTURE;

Advanced Electronics Design Automation

Student ID: 0308686

4. Simulation of each Design using Leapfrog

Each major module of the ASDT is simulated individually with considering all possible case. This simulation
testing is more functional tested otherthen for timing. Lots of precaution is taken into acount to get ease of final
top level de-bugging.

For transmit shift register simulation, two different data stream are checked. Here Parity bit is consider as a
datain[8] bit without counting the odd or_even signal.

For each module, following section describes the test vectors and their result.

1) Parity Bit Generator
This module is combinational. Here all four possiblity is shown.

a) Datain[7:0] =96h =“1001_0110” (number of 1’s = even)
Odd _or even= ‘0’ (number of 1’s output = even)
Parout = ‘0’ (result = number of 1’s are even)

b) Datain[7:0] =96h =“1001_0110” (number of 1’s = even)
Odd or even="‘1" (number of 1’s output = odd)
Parout= ‘1" (result = number of 1’s are odd)

& Bunsen - Citrix ICA Client

|| r||j|:|

Tinek = 280(0) us

Sin End = 280 us S 1 FR S TTUR T IR TR 1
CurZ-turl = -280 us o | mn 150 n
Graup: &
Yatain[7:0] = ‘hu 00 [3
Bi_br Even = v | |
Farmut = 1 [| |
¢) Datain[7:0]=E3h=*1110_0011" (number of 1’s = odd)
Odd or even="‘1" (number of 1’s output = odd)
Parout = ‘0’ (result = number of 1’s are odd)
d) Datain[7:0]=E3h=%1110_0011" (number of 1’s = odd)
Odd or even= ‘0’ (number of 1’s output = even)
Parout= ‘1" (result = number of 1’s are even)

Advanced Electronics Design Automation

Student ID: 0308686

i) Clock Division

ASDT transmit serial data at the rate of 556us/bit. To trasfer with such low speed, ASDT is using internal
clock divider. Transmit shift register use this clock to send serial data with start and stop bit.

Reset= ‘1"

Clk = 30 us (master clock)

Clkout = 616 — 75 ~ 541 us (master clock divide by 18)

unsen - Citrx lent

10

Advanced Electronics Design Automation

Student ID: 0308686

iii) Transmit Shift Register
All transaction of register is synchronised to rising CLKOUT clock. When LOAD goes high, it loads all parallel
data into the parallel in serial out register.
Input shift triggers all flip-flop to shift the content by one cycle. The last flip-flop shifts the least bit of
DATAOUT first. Consequently each bit gets shifted towards the Txdata Port.
On the last bit (stop bit) shift signal goes low, to indicate that now there is no data to transfer.

* When Load = ‘1°, Dataout gets latch in register

* When shift = ‘1’ (on rising edge of clock), Txdata indicates the start of operation.
Then Txdata sends the output in following format.
start bit = ‘0’| Do| D1| D2| D3| D4| D5| D6| D7| D8/parity bit| stop bit = ‘1’|
a) Dataout[8:0] = “096h” =0 1001 0110 (0 = parity bit, 96 = datain)

start bit= ‘0’| Do= ‘0" | D1= ‘1" | D2= ‘1’| D3= ‘0’| D4= 1’| D5= ‘0’ | D6= 0’| D7= ‘1’| parity bit= ‘0’|
stop bit= 1’|

b) Dataout[8:0] = “1E2h” = 1 1110 0010 (0 = parity bit, 96 = datain)

|start bit= ‘0’| Do= ‘0" | D1= ‘1" | D2= ‘0’| D3= ‘0’| D4= 0’| D5= ‘1" | D6= ‘1’| D7= ‘1’| parity bit= ‘1’|
stop bit = ‘1’|

{ Bunsen - Citrix ICA Client

Tined = 20, 000 us L ELER _
Sim End = 20,000 us abeh 4 . ST Tinek .= a0

2-Curl = w190 28248 us Yy E000 e A5, 001

Group: &
Clesr = 1 [§ |
et = 0 (MU U UV UV UUvvvvvrvvvwuy

Datsout[8:0] = 'k 1£2 096 [1E2
shift = 1 |_] L
Lean = [J_| [

miata =08 L[[T L _[1] [I

11

Advanced Electronics Design Automation

5. Integration at top Level

Student ID: 0308686

Asynchronous Serial Data Transmitter top-model

ASDT Top Model

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

--USE IEEE.STD LOGIC_UNSIGNED.ALL,;

LIBRARY work;

ENTITY ASDT IS
port
(
CLK :
ODD OR EVEN:
RESET :
WRITE :
DATAIN :
TxDATA :
BUSY :
);
END ASDT;

IN STD LOGIC;

IN STD LOGIC;

IN STD_LOGIC;

IN STD LOGIC;

IN STD _LOGIC VECTOR(7 downto 0);
OUT STD_LOGIC;

OUT STD_LOGIC

ARCHITECTURE ASDT TOP OF ASDT IS

COMPONENT ASYN_GLUE
PORT (

CLK :
RESET :
WRITE :
PAROUT:
DATAIN:
CLEAR :
LOAD :
SHIFT :
BUSY :
DATAOUT:

)
END COMPONENT;

COMPONENT TX_SHFT

IN STD_LOGIC;

IN STD_LOGIC;

IN STD_LOGIC;

IN STD_LOGIC;

IN STD_LOGIC_VECTOR(7 DOWNTO 0);
OUT STD_LOGIC;

OUT STD_LOGIC;

OUT STD_LOGIC;

OUT STD_LOGIC;

OUT STD_LOGIC_VECTOR(8 DOWNTO 0)

PORT (
CLKOUT: IN STD_LOGIC;
CLEAR: IN STD_LOGIC;
LOAD: IN STD_LOGIC;
SHIFT: IN STD_LOGIC;
DATAOUT: IN STD_LOGIC_VECTOR(8 DOWNTO 0);
TxDATA: OUT STD_LOGIC

)
END COMPONENT;

COMPONENT CLK_DIV

12

Advanced Electronics Design Automation

Student ID: 0308686

PORT (
CLK: IN STD_LOGIC;
RESET: IN STD_LOGIC;
CLKOUT: OUT STD_LOGIC

END COMPONENT;

COMPONENT PAR_MOD

PORT (
ODD_OR_EVEN: IN STD_LOGIC;
DATAIN: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
PAROUT: OUT STD_LOGIC

)

END COMPONENT;
signal CLEAR,CLKOUT,PAROUT,SHIFT,LOAD: STD LOGIC;
signal DATAOUT : STD_LOGIC_VECTOR(8 DOWNTO 0);

BEGIN

BLKI : ASYN GLUE

PORT MAP(CLK=> CLK,
RESET=> RESET,
WRITE=> WRITE,

PAROUT=> PAROUT,
DATAIN=> DATAIN,

CLEAR=> CLEAR,
LOAD=> LOAD,
SHIFT=> SHIFT,
BUSY=> BUSY,

DATAOUT=> DATAOUT
)

BLK2 : TX_SHFT

PORT MAP(CLKOUT=> CLKOUT,
CLEAR=> CLEAR,
LOAD=> LOAD,
SHIFT=> SHIFT,

DATAOUT=> DATAOUT,
TxDATA=> TxDATA

)

BLK3 : CLK DIV

PORT MAP(CLK=> CLK,
RESET=> RESET,
CLKOUT=> CLKOUT

)
BLK4 : PAR_ MOD
PORT MAP(ODD OR_EVEN=>0DD OR_EVEN,

DATAIN=> DATAIN,
PAROUT=> PAROUT

)

END ASDT TOP;

13

Advanced Electronics Design Automation

Student ID: 0308686

6. Test bench for ASDT

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD _LOGIC_ARITH.ALL;

entity ASDT _tstbnch is

port (txdata,busy: out std_logic);
end ASDT _tstbnch;

ARCHITECTURE BNCH OF ASDT tstbnch IS

COMPONENT ASDT
port (
CLK : IN STD LOGIC;
ODD_OR_EVEN : IN STD_LOGIC;
RESET : IN STD_LOGIC;
WRITE : IN STD LOGIC;
DATAIN : IN STD LOGIC VECTOR(7 downto 0);
TxDATA : OUT STD_LOGIC;
BUSY : OUT STD_LOGIC);

END COMPONENT;
constant period: time:= 30 us; --to generate signal w.r.t clk=30us
constant period2:time := 260 * period; --to generate signal w.r.t clkout

constant period3: time:= 320 * period;

SIGNAL CLK,ODD_OR_EVEN,RESET,WRITE: STD LOGIC;
SIGNAL DATAIN: STD_LOGIC_VECTOR(7 downto 0);

BEGIN

ASDT _UUT: ASDT
PORT MAP (CLK,ODD _OR_EVEN,RESET,WRITE,DATAIN,TxDATA,BUSY);

clock gen : process
begin
clk <="'1",'0" after 15 us; ----- T=30.5us
wait for 30 us;
end process;
reset <="'0', 'l' after 45 us, '0' after period2, '1' after period2 + 30 us ;
datain<="00000000", "10010110" after 275 us, "11100010" after period2;
write<="'1",'0" after 315 us, '1" after 405 us, '0' after period3, '1' after period3 + 90 us;

odd or_even <='0", 'l" after period2;

end;

14

Advanced Electronics Design Automation

Student ID: 0308686

a) Simulated waveform of ASDT (using a Testbench)

In this test vectors are the same which were used for Transmit shift register. Here all internal signal are shown
clearly.
Following is the driving force tree

Reset => Clear

Write => Load
Odd_or_even => Parout
Clk => Clkout

Load => Shift, Busy
Shift & Clkout => Txdata

lscan Waveform:l

Format Options Windows

Fazte ZoomJuts AR CrtMarker || Des

15

Advanced Electronics Design Automation

Student ID: 0308686

b) The below waveform shows the top level verification of the ASDT.

DAl Signalscan Waveform:

ortrol - View Format Options Windows — Help

Cut Copy Faste lelete ZoomIn ZoomOut¥ | ZnutkFull

‘furanc? = 0 us

CrtMarker

Tesz

16

Advanced Electronics Design Automation

Student ID: 0308686

7. Hierarchical Schematic Diagram for the ASDT using Logic Synthesis

a) Parity Generator:

DATAIN [

-4, 11
T—[} PAROUT

CoDD_CR_EVEN [

AGL_UNS_EG 1_PAR_MCD

ATL_LOGIGO

S};nthesis Logic of PAR_MOD.Vhd

b) Asynchronous Glue

17

Advanced Electronics Design Automation
Student ID: 0308686

Schematic Viewer 3

iy » | Options » | Search

WE 1 d|Pagelofl

Synthesis Logic of ASYC GLUE.Vhd

18

Advanced Electronics Design Automation

Student ID: 0308686

C) Transmit Shift Register:

Modules |TH_SHET TH_SHFT 1 ¥ | Page 1 of 1

|
|

Synthesis Logic of TX SFHT.Vhd

D) Top Level Schematic

WRITE [

CLE_DIv

Schematic Diagram of ASDT

19

Advanced Electronics Design Automation

Student ID: 0308686

8. Verilog — HDL Module Descriptions

a) Parity Bit Generator

1) Parity Bit Generator:-Verilog Code

Parity Bit Generator

//
//Tittle: Parity Bit Generator

//Project: Asynchronous Serial Data Transmitter
//
//File Name:par_gen.v
//File Type:Verilog-HDL
//
// Description:

// This module is combinational. Applying a logic-1 to'odd nt_even' results in overall
// odd parity of 'datain' and 'parout'; otherwise the overall party is even.

module par_gen

(datain, // parallel input data for register
odd nt even, //input to select parity

parout /[parity output

)i

[[7mmmmm e Input Ports------------

input [7:0] datain;
input odd_nt_even;

reg parout;
wire par_out;

/lexplicit usage of continuous assigment
assign par_out = “datain; /Ipar_out will be high if number of 1's are odd

always @ (par_out or odd_nt even)

begin
if (lodd nt even) // if odd nt even =0
parout = par_out; // if number of 1's are even then output will be low otherwise high
else
parout = ~ par_out; //if number of 1's are odd then output will be low
end
endmodule

20

Advanced Electronics Design Automation

ii) Parity Bit Generator:-Test bench

module par_gentst bnch;
wire parout;

reg [7:0]datain;
reg odd_nt even;

Student ID: 0308686

par_gen DUT(datain,odd_nt_even,parout); /module instantiation

initial
begin

datain = 8'b 00001110;
odd nt _even = 0;

#30 odd nt even=1;

30 datain=8b 11101110;
30 odd nt_even =0;

10 $stop;

end

endmodule

iii) Parity Bit Generator:-Simulated Waveform

a) Datain[7:0] = 0Eh =“00001110"
Odd_or even = ‘0’
Parout= ‘1"

b) Datain[7:0] = 0Eh =“00001110”
Odd or even="‘1"
Parout = ‘0’

¢) Datain[7:0]=E3h=%11101110"
Odd or even="‘1"
Parout = ‘1"

d) Datain[7:0] = E3h=%11101110"
Odd_or even = ‘0’
Parout = ‘0’

(number of 1’s = odd)
(number of 1’s output = even)
(result = number of 1’s are even)

(number of 1’s = odd)
(number of 1’s output = odd)
(result = number of 1’s are odd)

(number of 1’s = even)
(number of 1’s output = odd)
(result = number of 1’s are odd)

(number of 1’s = even)

(number of 1’s output = even)
(result = number of 1’s are even)

21

Advanced Electronics Design Automation

Student ID: 0308686

b) Transmit Shift Register

i) Transmit Shift Register:-Verilog Code

Transmit Shift Register

module tx_shft (

clear, // reset to shift register

load, // enable for shift register
clkout, // clock input

shift, // shift input for register

datain, // parallel input data for register
txout // serial out data

);

e Input Ports------------

input [8:0] datain;
input clear,load,clkout,shift;

output txout;

reg txout;

s Internal net & data types--------

// Note that lenght of shift register can be changed.If you want to replace your project
// specific blocks here:you can replace this width.

parameter lenght= 12; //lenght of shift register - would be lenght-1
reg [lenght-1:0] dat_par;
[[=mmmmmmmmmmee Code Starts Here-------
always @ (negedge clear or posedge clkout) /I clock event or control
begin
if (! clear) // conditional statement to reset the signal to high state
begin

dat par <= 12b111111111111;
txout <= dat_par[0];
end
else if (load) // loading the valid data
begin
dat_par <= {1'bl,datain,1'b0,1'b1};
txout <= dat_par[0];

end

else if (shift) // shifting right
begin
dat_par <= {1'bl,dat_par[10:1]};
txout <= dat_par[0]; // loading the least bit to serial output
end

end

endmodule

22

Advanced Electronics Design

ii) Transmit Shift Register:-Test bench
module tx_shfttst bnch;

wire txout;
reg clear,load,clkout,shift;
reg [8:0] datain;

tx_shft DUT (clear,load,clkout,shift,datain,txout); // module instantiation

initial
begin
clkout = 1'b0; /I clock generation
forever
#275 clkout = ~clkout;
end
initial
fork
datain =9'b011101110;

clear = 1'b0;
#600 clear = 1'bl;

load = 1'b0;
#835load = 1'bl;
#1410 load = 1'b0;

shift = 1'b0;
#1440 shift = 1'b1;
#8000 shift = 1'b0;

#9000 $stop; //stop the simulation after 9000 unit

join
endmodule

Automation

Student ID: 0308686

23

Advanced Electronics Design Automation

Student ID: 0308686

i) Transmit Shift Register:- Simulated Waveform

txout = 1

* When Load = “1°, Dataout gets latch in register

* When shift = ‘1’ (on rising edge of clock), Txdata indicates the start of operation.
Then Txdata sends the output in following format.
start bit = ‘0’| Do| D1| D2| D3| D4| D5| D6| D7| D8/parity bit| stop bit = ‘1’|

a) Dataout[8:0] = “OEEh” =0 1110 1110 (0 = parity bit, EE = datain)

start bit= ‘0’| Do= ‘0" | D1=“1" | D2= ‘1’| D3= ‘1’| D4= ‘0’| D5= ‘1" | D6= ‘1’| D7= ‘1’| parity bit= ‘0’|
stop bit = ‘1’|

24

Advanced Electronics Design Automation

Student ID: 0308686

9. Conclusion:
In short, the ASDT is very easy to use. Simple considerations to timing and flexibility makes design a clean
solution for serial transmitter application.

References
[1] Tan Elliott of Northumbria University, www.ami.ac.uk
[2] VHDL for designers, Stefan Sjoholm

25

